AutoPas  3.0.0
Loading...
Searching...
No Matches
Classes | Public Member Functions | Static Public Member Functions | List of all members
mdLib::LJFunctorSVE< Particle_T, applyShift, useMixing, useNewton3, calculateGlobals, countFLOPs, relevantForTuning > Class Template Reference

A functor to handle lennard-jones interactions between two particles (molecules). More...

#include <LJFunctorSVE.h>

Inheritance diagram for mdLib::LJFunctorSVE< Particle_T, applyShift, useMixing, useNewton3, calculateGlobals, countFLOPs, relevantForTuning >:
Inheritance graph
[legend]
Collaboration diagram for mdLib::LJFunctorSVE< Particle_T, applyShift, useMixing, useNewton3, calculateGlobals, countFLOPs, relevantForTuning >:
Collaboration graph
[legend]

Public Member Functions

 LJFunctorSVE ()=delete
 Deleted default constructor.
 
 LJFunctorSVE (double cutoff)
 Constructor for Functor with mixing disabled.
 
 LJFunctorSVE (double cutoff, ParticlePropertiesLibrary< double, size_t > &particlePropertiesLibrary)
 Constructor for Functor with mixing active.
 
std::string getName () final
 Returns name of functor.
 
bool isRelevantForTuning () final
 Specifies whether the functor should be considered for the auto-tuning process.
 
bool allowsNewton3 () final
 Specifies whether the functor is capable of Newton3-like functors.
 
bool allowsNonNewton3 () final
 Specifies whether the functor is capable of non-Newton3-like functors.
 
void AoSFunctor (Particle_T &i, Particle_T &j, bool newton3) final
 PairwiseFunctor for arrays of structures (AoS).
 
void SoAFunctorSingle (autopas::SoAView< SoAArraysType > soa, bool newton3) final
 PairwiseFunctor for structure of arrays (SoA)
 
void SoAFunctorPair (autopas::SoAView< SoAArraysType > soa1, autopas::SoAView< SoAArraysType > soa2, const bool newton3) final
 PairwiseFunctor for structure of arrays (SoA)
 
void SoAFunctorVerlet (autopas::SoAView< SoAArraysType > soa, const size_t indexFirst, const std::vector< size_t, autopas::AlignedAllocator< size_t > > &neighborList, bool newton3) final
 PairwiseFunctor for structure of arrays (SoA) for neighbor lists.
 
void initTraversal () final
 Reset the global values.
 
void endTraversal (bool newton3) final
 Accumulates global values, e.g.
 
double getPotentialEnergy ()
 Get the potential Energy.
 
double getVirial ()
 Get the virial.
 
void setParticleProperties (double epsilon24, double sigmaSquared)
 Sets the particle properties constants for this functor.
 
- Public Member Functions inherited from autopas::PairwiseFunctor< Particle_T, CRTP_T >
 PairwiseFunctor (double cutoff)
 Constructor.
 
virtual void AoSFunctor (Particle_T &i, Particle_T &j, bool newton3)
 PairwiseFunctor for arrays of structures (AoS).
 
virtual void SoAFunctorSingle (SoAView< SoAArraysType > soa, bool newton3)
 PairwiseFunctor for structure of arrays (SoA)
 
virtual void SoAFunctorVerlet (SoAView< SoAArraysType > soa, const size_t indexFirst, const std::vector< size_t, AlignedAllocator< size_t > > &neighborList, bool newton3)
 PairwiseFunctor for structure of arrays (SoA) for neighbor lists.
 
virtual void SoAFunctorPair (SoAView< SoAArraysType > soa1, SoAView< SoAArraysType > soa2, bool newton3)
 PairwiseFunctor for structure of arrays (SoA)
 
- Public Member Functions inherited from autopas::Functor< Particle_T, CRTP_T >
 Functor (double cutoff)
 Constructor.
 
virtual void initTraversal ()
 This function is called at the start of each traversal.
 
virtual void endTraversal (bool newton3)
 This function is called at the end of each traversal.
 
template<class ParticleCell >
void SoALoader (ParticleCell &cell, SoA< SoAArraysType > &soa, size_t offset, bool skipSoAResize)
 Copies the AoS data of the given cell in the given soa.
 
template<typename ParticleCell >
void SoAExtractor (ParticleCell &cell, SoA< SoAArraysType > &soa, size_t offset)
 Copies the data stored in the soa back into the cell.
 
virtual bool allowsNewton3 ()=0
 Specifies whether the functor is capable of Newton3-like functors.
 
virtual bool allowsNonNewton3 ()=0
 Specifies whether the functor is capable of non-Newton3-like functors.
 
virtual bool isRelevantForTuning ()=0
 Specifies whether the functor should be considered for the auto-tuning process.
 
virtual std::string getName ()=0
 Returns name of functor.
 
double getCutoff () const
 Getter for the functor's cutoff.
 
virtual size_t getNumFLOPs () const
 Get the number of FLOPs.
 
virtual double getHitRate () const
 Get the hit rate.
 

Static Public Member Functions

static constexpr auto getNeededAttr ()
 Get attributes needed for computation.
 
static constexpr auto getNeededAttr (std::false_type)
 Get attributes needed for computation without N3 optimization.
 
static constexpr auto getComputedAttr ()
 Get attributes computed by this functor.
 
static constexpr bool getMixing ()
 
static unsigned long getNumFlopsPerKernelCall (size_t molAType, size_t molBType, bool newton3)
 Get the number of flops used per kernel call for a given particle pair.
 
- Static Public Member Functions inherited from autopas::Functor< Particle_T, CRTP_T >
static constexpr std::array< typename Particle_T::AttributeNames, 0 > getNeededAttr ()
 Get attributes needed for computation.
 
static constexpr std::array< typename Particle_T::AttributeNames, 0 > getNeededAttr (std::false_type)
 Get attributes needed for computation without N3 optimization.
 
static constexpr std::array< typename Particle_T::AttributeNames, 0 > getComputedAttr ()
 Get attributes computed by this functor.
 

Additional Inherited Members

- Public Types inherited from autopas::PairwiseFunctor< Particle_T, CRTP_T >
using SoAArraysType = typename Particle_T::SoAArraysType
 Structure of the SoAs defined by the particle.
 
- Public Types inherited from autopas::Functor< Particle_T, CRTP_T >
using SoAArraysType = typename Particle_T::SoAArraysType
 Structure of the SoAs defined by the particle.
 
using Functor_T = CRTP_T
 Make the Implementation type template publicly available.
 

Detailed Description

template<class Particle_T, bool applyShift = false, bool useMixing = false, autopas::FunctorN3Modes useNewton3 = autopas::FunctorN3Modes::Both, bool calculateGlobals = false, bool countFLOPs = false, bool relevantForTuning = true>
class mdLib::LJFunctorSVE< Particle_T, applyShift, useMixing, useNewton3, calculateGlobals, countFLOPs, relevantForTuning >

A functor to handle lennard-jones interactions between two particles (molecules).

This functor assumes that duplicated calculations are always happening, which is characteristic for a Full-Shell scheme. This Version is implemented using SVE intrinsics.

Template Parameters
Particle_TThe type of particle.
ParticleCellThe type of particlecell.
applyShiftSwitch for the lj potential to be truncated shifted.
useMixingSwitch for the functor to be used with multiple particle types. If set to false, _epsilon and _sigma need to be set and the constructor with PPL can be omitted.
useNewton3Switch for the functor to support newton3 on, off or both. See FunctorN3Modes for possible values.
calculateGlobalsDefines whether the global values are to be calculated (energy, virial).
relevantForTuningWhether or not the auto-tuner should consider this functor.
countFLOPscounts FLOPs and hitrate. Not implemented for this functor. Please use the AutoVec functor.

Constructor & Destructor Documentation

◆ LJFunctorSVE() [1/2]

template<class Particle_T , bool applyShift = false, bool useMixing = false, autopas::FunctorN3Modes useNewton3 = autopas::FunctorN3Modes::Both, bool calculateGlobals = false, bool countFLOPs = false, bool relevantForTuning = true>
mdLib::LJFunctorSVE< Particle_T, applyShift, useMixing, useNewton3, calculateGlobals, countFLOPs, relevantForTuning >::LJFunctorSVE ( double  cutoff)
inlineexplicit

Constructor for Functor with mixing disabled.

When using this functor it is necessary to call setParticleProperties() to set internal constants because it does not use a particle properties library.

Note
Only to be used with mixing == false.
Parameters
cutoff

◆ LJFunctorSVE() [2/2]

template<class Particle_T , bool applyShift = false, bool useMixing = false, autopas::FunctorN3Modes useNewton3 = autopas::FunctorN3Modes::Both, bool calculateGlobals = false, bool countFLOPs = false, bool relevantForTuning = true>
mdLib::LJFunctorSVE< Particle_T, applyShift, useMixing, useNewton3, calculateGlobals, countFLOPs, relevantForTuning >::LJFunctorSVE ( double  cutoff,
ParticlePropertiesLibrary< double, size_t > &  particlePropertiesLibrary 
)
inlineexplicit

Constructor for Functor with mixing active.

This functor takes a ParticlePropertiesLibrary to look up (mixed) properties like sigma, epsilon and shift.

Parameters
cutoff
particlePropertiesLibrary

Member Function Documentation

◆ allowsNewton3()

template<class Particle_T , bool applyShift = false, bool useMixing = false, autopas::FunctorN3Modes useNewton3 = autopas::FunctorN3Modes::Both, bool calculateGlobals = false, bool countFLOPs = false, bool relevantForTuning = true>
bool mdLib::LJFunctorSVE< Particle_T, applyShift, useMixing, useNewton3, calculateGlobals, countFLOPs, relevantForTuning >::allowsNewton3 ( )
inlinefinalvirtual

Specifies whether the functor is capable of Newton3-like functors.

If the functor provides an interface to soa or aos functions that utilize Newton's third law of motion (actio = reactio) to reduce the computational complexity this function should return true. If this is not the case this function should return false.

Returns
true if and only if this functor provides an interface to Newton3-like functions.

Implements autopas::Functor< Particle_T, CRTP_T >.

◆ allowsNonNewton3()

template<class Particle_T , bool applyShift = false, bool useMixing = false, autopas::FunctorN3Modes useNewton3 = autopas::FunctorN3Modes::Both, bool calculateGlobals = false, bool countFLOPs = false, bool relevantForTuning = true>
bool mdLib::LJFunctorSVE< Particle_T, applyShift, useMixing, useNewton3, calculateGlobals, countFLOPs, relevantForTuning >::allowsNonNewton3 ( )
inlinefinalvirtual

Specifies whether the functor is capable of non-Newton3-like functors.

If the functor provides an interface to soa or aos functions that do not utilize Newton's third law of motion (actio = reactio) this function should return true. If this is not the case this function should return false.

Returns
true if and only if this functor provides an interface to functions that do not utilize Newton3.

Implements autopas::Functor< Particle_T, CRTP_T >.

◆ AoSFunctor()

template<class Particle_T , bool applyShift = false, bool useMixing = false, autopas::FunctorN3Modes useNewton3 = autopas::FunctorN3Modes::Both, bool calculateGlobals = false, bool countFLOPs = false, bool relevantForTuning = true>
void mdLib::LJFunctorSVE< Particle_T, applyShift, useMixing, useNewton3, calculateGlobals, countFLOPs, relevantForTuning >::AoSFunctor ( Particle_T &  i,
Particle_T &  j,
bool  newton3 
)
inlinefinalvirtual

PairwiseFunctor for arrays of structures (AoS).

This functor should calculate the forces or any other pair-wise interaction between two particles. This should include a cutoff check if needed!

Parameters
iParticle i
jParticle j
newton3defines whether or whether not to use newton 3

Reimplemented from autopas::PairwiseFunctor< Particle_T, CRTP_T >.

◆ endTraversal()

template<class Particle_T , bool applyShift = false, bool useMixing = false, autopas::FunctorN3Modes useNewton3 = autopas::FunctorN3Modes::Both, bool calculateGlobals = false, bool countFLOPs = false, bool relevantForTuning = true>
void mdLib::LJFunctorSVE< Particle_T, applyShift, useMixing, useNewton3, calculateGlobals, countFLOPs, relevantForTuning >::endTraversal ( bool  newton3)
inlinefinalvirtual

Accumulates global values, e.g.

potentialEnergy and virial.

Parameters
newton3

Reimplemented from autopas::Functor< Particle_T, CRTP_T >.

◆ getComputedAttr()

template<class Particle_T , bool applyShift = false, bool useMixing = false, autopas::FunctorN3Modes useNewton3 = autopas::FunctorN3Modes::Both, bool calculateGlobals = false, bool countFLOPs = false, bool relevantForTuning = true>
static constexpr auto mdLib::LJFunctorSVE< Particle_T, applyShift, useMixing, useNewton3, calculateGlobals, countFLOPs, relevantForTuning >::getComputedAttr ( )
inlinestaticconstexpr

Get attributes computed by this functor.

Returns
Attributes computed by this functor.
Todo:
C++20: make this function virtual

◆ getMixing()

template<class Particle_T , bool applyShift = false, bool useMixing = false, autopas::FunctorN3Modes useNewton3 = autopas::FunctorN3Modes::Both, bool calculateGlobals = false, bool countFLOPs = false, bool relevantForTuning = true>
static constexpr bool mdLib::LJFunctorSVE< Particle_T, applyShift, useMixing, useNewton3, calculateGlobals, countFLOPs, relevantForTuning >::getMixing ( )
inlinestaticconstexpr
Returns
useMixing

◆ getName()

template<class Particle_T , bool applyShift = false, bool useMixing = false, autopas::FunctorN3Modes useNewton3 = autopas::FunctorN3Modes::Both, bool calculateGlobals = false, bool countFLOPs = false, bool relevantForTuning = true>
std::string mdLib::LJFunctorSVE< Particle_T, applyShift, useMixing, useNewton3, calculateGlobals, countFLOPs, relevantForTuning >::getName ( )
inlinefinalvirtual

Returns name of functor.

Intended for use with the iteration logger, to differentiate between calls to computeInteractions using different functors in the logs.

Returns
name of functor.

Implements autopas::Functor< Particle_T, CRTP_T >.

◆ getNeededAttr() [1/2]

template<class Particle_T , bool applyShift = false, bool useMixing = false, autopas::FunctorN3Modes useNewton3 = autopas::FunctorN3Modes::Both, bool calculateGlobals = false, bool countFLOPs = false, bool relevantForTuning = true>
static constexpr auto mdLib::LJFunctorSVE< Particle_T, applyShift, useMixing, useNewton3, calculateGlobals, countFLOPs, relevantForTuning >::getNeededAttr ( )
inlinestaticconstexpr

Get attributes needed for computation.

Returns
Attributes needed for computation.
Todo:
C++20: make this function virtual

◆ getNeededAttr() [2/2]

template<class Particle_T , bool applyShift = false, bool useMixing = false, autopas::FunctorN3Modes useNewton3 = autopas::FunctorN3Modes::Both, bool calculateGlobals = false, bool countFLOPs = false, bool relevantForTuning = true>
static constexpr auto mdLib::LJFunctorSVE< Particle_T, applyShift, useMixing, useNewton3, calculateGlobals, countFLOPs, relevantForTuning >::getNeededAttr ( std::false_type  )
inlinestaticconstexpr

Get attributes needed for computation without N3 optimization.

Returns
Attributes needed for computation.
Todo:
C++20: make this function virtual

◆ getNumFlopsPerKernelCall()

template<class Particle_T , bool applyShift = false, bool useMixing = false, autopas::FunctorN3Modes useNewton3 = autopas::FunctorN3Modes::Both, bool calculateGlobals = false, bool countFLOPs = false, bool relevantForTuning = true>
static unsigned long mdLib::LJFunctorSVE< Particle_T, applyShift, useMixing, useNewton3, calculateGlobals, countFLOPs, relevantForTuning >::getNumFlopsPerKernelCall ( size_t  molAType,
size_t  molBType,
bool  newton3 
)
inlinestatic

Get the number of flops used per kernel call for a given particle pair.

This should count the floating point operations needed for two particles that lie within a cutoff radius, having already calculated the distance.

Parameters
molATypemolecule A's type id
molBTypemolecule B's type id
newton3is newton3 applied.
Note
molAType and molBType make no difference for LJFunctor, but are kept to have a consistent interface for other functors where they may.
Returns
the number of floating point operations

◆ getPotentialEnergy()

template<class Particle_T , bool applyShift = false, bool useMixing = false, autopas::FunctorN3Modes useNewton3 = autopas::FunctorN3Modes::Both, bool calculateGlobals = false, bool countFLOPs = false, bool relevantForTuning = true>
double mdLib::LJFunctorSVE< Particle_T, applyShift, useMixing, useNewton3, calculateGlobals, countFLOPs, relevantForTuning >::getPotentialEnergy ( )
inline

Get the potential Energy.

Returns
the potential Energy

◆ getVirial()

template<class Particle_T , bool applyShift = false, bool useMixing = false, autopas::FunctorN3Modes useNewton3 = autopas::FunctorN3Modes::Both, bool calculateGlobals = false, bool countFLOPs = false, bool relevantForTuning = true>
double mdLib::LJFunctorSVE< Particle_T, applyShift, useMixing, useNewton3, calculateGlobals, countFLOPs, relevantForTuning >::getVirial ( )
inline

Get the virial.

Returns
the virial

◆ initTraversal()

template<class Particle_T , bool applyShift = false, bool useMixing = false, autopas::FunctorN3Modes useNewton3 = autopas::FunctorN3Modes::Both, bool calculateGlobals = false, bool countFLOPs = false, bool relevantForTuning = true>
void mdLib::LJFunctorSVE< Particle_T, applyShift, useMixing, useNewton3, calculateGlobals, countFLOPs, relevantForTuning >::initTraversal ( )
inlinefinalvirtual

Reset the global values.

Will set the global values to zero to prepare for the next iteration.

Reimplemented from autopas::Functor< Particle_T, CRTP_T >.

◆ isRelevantForTuning()

template<class Particle_T , bool applyShift = false, bool useMixing = false, autopas::FunctorN3Modes useNewton3 = autopas::FunctorN3Modes::Both, bool calculateGlobals = false, bool countFLOPs = false, bool relevantForTuning = true>
bool mdLib::LJFunctorSVE< Particle_T, applyShift, useMixing, useNewton3, calculateGlobals, countFLOPs, relevantForTuning >::isRelevantForTuning ( )
inlinefinalvirtual

Specifies whether the functor should be considered for the auto-tuning process.

Returns
true if and only if this functor is relevant for auto-tuning.

Implements autopas::Functor< Particle_T, CRTP_T >.

◆ setParticleProperties()

template<class Particle_T , bool applyShift = false, bool useMixing = false, autopas::FunctorN3Modes useNewton3 = autopas::FunctorN3Modes::Both, bool calculateGlobals = false, bool countFLOPs = false, bool relevantForTuning = true>
void mdLib::LJFunctorSVE< Particle_T, applyShift, useMixing, useNewton3, calculateGlobals, countFLOPs, relevantForTuning >::setParticleProperties ( double  epsilon24,
double  sigmaSquared 
)
inline

Sets the particle properties constants for this functor.

This is only necessary if no particlePropertiesLibrary is used.

Parameters
epsilon24
sigmaSquared

◆ SoAFunctorPair()

template<class Particle_T , bool applyShift = false, bool useMixing = false, autopas::FunctorN3Modes useNewton3 = autopas::FunctorN3Modes::Both, bool calculateGlobals = false, bool countFLOPs = false, bool relevantForTuning = true>
void mdLib::LJFunctorSVE< Particle_T, applyShift, useMixing, useNewton3, calculateGlobals, countFLOPs, relevantForTuning >::SoAFunctorPair ( autopas::SoAView< SoAArraysType >  soa1,
autopas::SoAView< SoAArraysType >  soa2,
const bool  newton3 
)
inlinefinalvirtual

PairwiseFunctor for structure of arrays (SoA)

This functor should calculate the forces or any other pair-wise interaction between all particles of soa1 and soa2. This should include a cutoff check if needed!

Parameters
soa1First structure of arrays.
soa2Second structure of arrays.
newton3defines whether or whether not to use newton 3

Reimplemented from autopas::PairwiseFunctor< Particle_T, CRTP_T >.

◆ SoAFunctorSingle()

template<class Particle_T , bool applyShift = false, bool useMixing = false, autopas::FunctorN3Modes useNewton3 = autopas::FunctorN3Modes::Both, bool calculateGlobals = false, bool countFLOPs = false, bool relevantForTuning = true>
void mdLib::LJFunctorSVE< Particle_T, applyShift, useMixing, useNewton3, calculateGlobals, countFLOPs, relevantForTuning >::SoAFunctorSingle ( autopas::SoAView< SoAArraysType >  soa,
bool  newton3 
)
inlinefinalvirtual

PairwiseFunctor for structure of arrays (SoA)

This functor should calculate the forces or any other pair-wise interaction between all particles in an soa. This should include a cutoff check if needed!

Parameters
soaStructure of arrays
newton3defines whether or whether not to use newton 3 This functor will always do a newton3 like traversal of the soa. However, it still needs to know about newton3 to correctly add up the global values.

Reimplemented from autopas::PairwiseFunctor< Particle_T, CRTP_T >.

◆ SoAFunctorVerlet()

template<class Particle_T , bool applyShift = false, bool useMixing = false, autopas::FunctorN3Modes useNewton3 = autopas::FunctorN3Modes::Both, bool calculateGlobals = false, bool countFLOPs = false, bool relevantForTuning = true>
void mdLib::LJFunctorSVE< Particle_T, applyShift, useMixing, useNewton3, calculateGlobals, countFLOPs, relevantForTuning >::SoAFunctorVerlet ( autopas::SoAView< SoAArraysType >  soa,
const size_t  indexFirst,
const std::vector< size_t, autopas::AlignedAllocator< size_t > > &  neighborList,
bool  newton3 
)
inlinefinalvirtual

PairwiseFunctor for structure of arrays (SoA) for neighbor lists.

This functor should calculate the forces or any other pair-wise interaction between the particle in the SoA with index indexFirst and all particles with indices in the neighborList. This should include a cutoff check if needed!

Parameters
soaStructure of arrays
indexFirstThe index of the first particle for each interaction
neighborListThe list of neighbors
newton3defines whether or whether not to use newton 3
Note
If you want to parallelize this by openmp, please ensure that there are no dependencies, i.e. introduce colors and specify iFrom and iTo accordingly.

Reimplemented from autopas::PairwiseFunctor< Particle_T, CRTP_T >.


The documentation for this class was generated from the following file: