AutoPas  3.0.0
Loading...
Searching...
No Matches
Public Member Functions | List of all members
autopas::BayesianClusterSearch Class Reference

Assume that the stochastic distribution of the execution time while fixing discrete variables corresponds to a Gaussian Process. More...

#include <BayesianClusterSearch.h>

Inheritance diagram for autopas::BayesianClusterSearch:
Inheritance graph
[legend]
Collaboration diagram for autopas::BayesianClusterSearch:
Collaboration graph
[legend]

Public Member Functions

 BayesianClusterSearch (const InteractionTypeOption &interactionType, const std::set< ContainerOption > &allowedContainerOptions=ContainerOption::getAllOptions(), const NumberSet< double > &allowedCellSizeFactors=NumberInterval< double >(1., 2.), const std::set< TraversalOption > &allowedTraversalOptions=TraversalOption::getAllOptions(), const std::set< LoadEstimatorOption > &allowedLoadEstimatorOptions=LoadEstimatorOption::getAllOptions(), const std::set< DataLayoutOption > &allowedDataLayoutOptions=DataLayoutOption::getAllOptions(), const std::set< Newton3Option > &allowedNewton3Options=Newton3Option::getAllOptions(), size_t maxEvidence=10, AcquisitionFunctionOption predAcqFunction=AcquisitionFunctionOption::upperConfidenceBound, const std::string &outputSuffix="", size_t predNumLHSamples=50, unsigned long seed=std::random_device()())
 Constructor.
 
TuningStrategyOption getOptionType () const override
 Get this object's associated TuningStrategyOption type.
 
void addEvidence (const Configuration &configuration, const Evidence &evidence) override
 Notifies the strategy about empirically collected information for the given configuration.
 
bool reset (size_t iteration, size_t tuningPhase, std::vector< Configuration > &configQueue, const autopas::EvidenceCollection &evidenceCollection) override
 Reset all internal parameters to the beginning of a new tuning phase.
 
bool optimizeSuggestions (std::vector< Configuration > &configQueue, const EvidenceCollection &evidenceCollection) override
 Optimizes the queue of configurations to process.
 
void rejectConfiguration (const Configuration &configuration, bool indefinitely) override
 Notify the strategy about a configuration that is (currently) invalid and thus can potentially be dropped from some internal storage.
 
bool searchSpaceIsEmpty () const
 Indicate if the search space is empty.
 
bool needsSmoothedHomogeneityAndMaxDensity () const override
 Indicate whether the strategy needs smoothed values of homogeneity and max density.
 
- Public Member Functions inherited from autopas::TuningStrategyInterface
virtual TuningStrategyOption getOptionType () const =0
 Get this object's associated TuningStrategyOption type.
 
virtual void addEvidence (const Configuration &configuration, const Evidence &evidence)
 Notifies the strategy about empirically collected information for the given configuration.
 
virtual bool optimizeSuggestions (std::vector< Configuration > &configQueue, const EvidenceCollection &evidenceCollection)=0
 Optimizes the queue of configurations to process.
 
virtual bool reset (size_t iteration, size_t tuningPhase, std::vector< Configuration > &configQueue, const autopas::EvidenceCollection &evidenceCollection)=0
 Reset all internal parameters to the beginning of a new tuning phase.
 
virtual bool needsLiveInfo () const
 Returns whether this tuning strategy wants to get a LiveInfo object passed before a new tuning phase.
 
virtual void receiveLiveInfo (const LiveInfo &info)
 Virtual method that subclasses can override to receive the LiveInfo object before a tuning phase if they return true in needsLiveInfo().
 
virtual void rejectConfiguration (const Configuration &configuration, bool indefinitely)
 Notify the strategy about a configuration that is (currently) invalid and thus can potentially be dropped from some internal storage.
 
virtual bool needsSmoothedHomogeneityAndMaxDensity () const
 Indicate whether the strategy needs smoothed values of homogeneity and max density.
 
virtual void receiveSmoothedHomogeneityAndMaxDensity (double homogeneity, double maxDensity)
 Method to pass smoothed homogeneity and the maximal density to the tuning strategy.
 

Detailed Description

Assume that the stochastic distribution of the execution time while fixing discrete variables corresponds to a Gaussian Process.

This allows to estimate the 'gain' of testing a given feature next.

Constructor & Destructor Documentation

◆ BayesianClusterSearch()

autopas::BayesianClusterSearch::BayesianClusterSearch ( const InteractionTypeOption &  interactionType,
const std::set< ContainerOption > &  allowedContainerOptions = ContainerOption::getAllOptions(),
const NumberSet< double > &  allowedCellSizeFactors = NumberInterval<double>(1., 2.),
const std::set< TraversalOption > &  allowedTraversalOptions = TraversalOption::getAllOptions(),
const std::set< LoadEstimatorOption > &  allowedLoadEstimatorOptions = LoadEstimatorOption::getAllOptions(),
const std::set< DataLayoutOption > &  allowedDataLayoutOptions = DataLayoutOption::getAllOptions(),
const std::set< Newton3Option > &  allowedNewton3Options = Newton3Option::getAllOptions(),
size_t  maxEvidence = 10,
AcquisitionFunctionOption  predAcqFunction = AcquisitionFunctionOption::upperConfidenceBound,
const std::string &  outputSuffix = "",
size_t  predNumLHSamples = 50,
unsigned long  seed = std::random_device()() 
)
explicit

Constructor.

Parameters
interactionType
allowedContainerOptions
allowedCellSizeFactors
allowedTraversalOptions
allowedLoadEstimatorOptions
allowedDataLayoutOptions
allowedNewton3Options
maxEvidenceStop tuning after given number of evidence provided.
predAcqFunctionAcquisition function used for prediction while tuning.
outputSuffixSuffix for output logger.
predNumLHSamplesNumber of latin-hypercube-samples used to find a evidence with high predicted acquisition
seedSeed of random number generator (should only be used for tests)

Member Function Documentation

◆ addEvidence()

void autopas::BayesianClusterSearch::addEvidence ( const Configuration configuration,
const Evidence evidence 
)
overridevirtual

Notifies the strategy about empirically collected information for the given configuration.

All evidence is stored centrally in the AutoTuner and its EvidenceCollection is passed to the tuning strategies during optimization.

Implementing this function is only necessary if the tuning strategy processes evidence differently than EvidenceCollection.

Parameters
configurationConfiguration used to obtain the evidence.
evidenceMeasurement and when it was taken.

Reimplemented from autopas::TuningStrategyInterface.

◆ getOptionType()

autopas::TuningStrategyOption autopas::BayesianClusterSearch::getOptionType ( ) const
overridevirtual

Get this object's associated TuningStrategyOption type.

Returns
TuningStrategyOption

Implements autopas::TuningStrategyInterface.

◆ needsSmoothedHomogeneityAndMaxDensity()

bool autopas::BayesianClusterSearch::needsSmoothedHomogeneityAndMaxDensity ( ) const
inlineoverridevirtual

Indicate whether the strategy needs smoothed values of homogeneity and max density.

Returns

Reimplemented from autopas::TuningStrategyInterface.

◆ optimizeSuggestions()

bool autopas::BayesianClusterSearch::optimizeSuggestions ( std::vector< Configuration > &  configQueue,
const EvidenceCollection evidenceCollection 
)
overridevirtual

Optimizes the queue of configurations to process.

This function is called once before each iteration in a tuning phase so all tuning strategies can give their input on which configuration to try next. This is done by reordering configQueue so that the next configuration to try is at the end (FIFO).

Parameters
configQueueQueue of configurations to be tested. The tuning strategy should edit this queue.
evidenceCollectionAll collected evidence until now.
Returns
boolean value to signal if the tuning strategy has intentionally wiped the config queue

Implements autopas::TuningStrategyInterface.

◆ rejectConfiguration()

void autopas::BayesianClusterSearch::rejectConfiguration ( const Configuration configuration,
bool  indefinitely 
)
overridevirtual

Notify the strategy about a configuration that is (currently) invalid and thus can potentially be dropped from some internal storage.

Parameters
configuration
indefinitelyWhether the given configuration will never be valid

Reimplemented from autopas::TuningStrategyInterface.

◆ reset()

bool autopas::BayesianClusterSearch::reset ( size_t  iteration,
size_t  tuningPhase,
std::vector< Configuration > &  configQueue,
const autopas::EvidenceCollection evidenceCollection 
)
overridevirtual

Reset all internal parameters to the beginning of a new tuning phase.

This can also mean to reorder the configQueue to some initially expected state.

Parameters
iterationGives the current iteration to the tuning strategy.
tuningPhaseGives the current tuning phase to the tuning strategy.
configQueueQueue of configurations to be tested. The tuning strategy should edit this queue.
evidenceCollectionAll collected evidence until now.
Returns
boolean value to signal if the tuning strategy has intentionally wiped the config queue

Implements autopas::TuningStrategyInterface.

◆ searchSpaceIsEmpty()

bool autopas::BayesianClusterSearch::searchSpaceIsEmpty ( ) const

Indicate if the search space is empty.

Returns

The documentation for this class was generated from the following files: