AutoPas  3.0.0
Loading...
Searching...
No Matches
VLCAllCellsNeighborList.h
Go to the documentation of this file.
1
12#pragma once
13
18
19namespace autopas {
20
26template <class Particle_T>
28 public:
33
37 using SoAPairOfParticleAndList = std::pair<size_t, std::vector<size_t, autopas::AlignedAllocator<size_t>>>;
38
43 using SoAListType = typename std::vector<std::vector<SoAPairOfParticleAndList>>;
44
48 [[nodiscard]] ContainerOption getContainerType() const override { return ContainerOption::verletListsCells; }
49
53 void buildAoSNeighborList(TraversalOption vlcTraversalOpt, LinkedCells<Particle_T> &linkedCells,
54 bool useNewton3) override {
55 using namespace utils::ArrayMath::literals;
56 // Sanity check.
57 if (linkedCells.getCellBlock().getCellsPerInteractionLength() > 1) {
59 "VLCAllCellsNeighborLists::buildAoSNeighborList() was called with a CSF < 1 but it only supports CSF>=1.");
60 }
61 // Define some aliases
62 auto &neighborLists = getAoSNeighborList();
63 auto &cells = linkedCells.getCells();
64 const auto interactionLength = linkedCells.getInteractionLength();
65 const auto interactionLengthSquared = interactionLength * interactionLength;
66 const auto boxSizeWithHalo = linkedCells.getBoxMax() - linkedCells.getBoxMin() +
67 std::array<double, 3>{interactionLength, interactionLength, interactionLength} * 2.;
68 // Create an estimate for the average length of a neighbor list.
69 // This assumes homogeneous distribution and some overestimation.
70 const auto listLengthEstimate = VerletListsCellsHelpers::estimateListLength(
71 linkedCells.getNumberOfParticles(IteratorBehavior::ownedOrHalo), boxSizeWithHalo, interactionLength, 1.3);
72
73 // Reset lists. Don't free any memory, only mark as unused.
74 this->setLinkedCellsPointer(&linkedCells);
75 for (auto &cellLists : neighborLists) {
76 for (auto &[particlePtr, neighbors] : cellLists) {
77 particlePtr = nullptr;
78 neighbors.clear();
79 }
80 }
81 neighborLists.resize(cells.size());
82
83 /* This must not be a doc comment (with two **) to not confuse doxygen.
84 * Helper function to insert a pointer into a list of the base cell.
85 * It considers the cases that neither particle is in the base cell
86 * and in that case finds or creates the appropriate list.
87 *
88 * @param p1 Reference to source particle.
89 * @param p1Index Index of p1 in its cell.
90 * @param p2 Reference to target particle.
91 * @param cellIndex1 Index of cell where p1 resides.
92 * @param cellIndexBase Index of the base cell of the c08 step.
93 * @param neighborList Reference to the list where the particle pair should be stored.
94 */
95 auto insert = [&](auto &p1, auto p1Index, auto &p2, auto cellIndex1, auto cellIndexBase, auto &neighborList) {
96 // Easy case: cell1 is the base cell
97 if (cellIndexBase == cellIndex1) {
98 neighborList[p1Index].second.push_back(&p2);
99 } else {
100 // Otherwise, check if the base cell already has a list for p1
101 auto iter = std::find_if(neighborList.begin(), neighborList.end(), [&](const auto &pair) {
102 const auto &[particlePtr, list] = pair;
103 return particlePtr == &p1;
104 });
105 // If yes, append p2 to it.
106 if (iter != neighborList.end()) {
107 iter->second.push_back(&p2);
108 } else {
109 // If no, create one (or reuse an empty pair), reserve space for the list and emplace p2
110 if (auto insertLoc = std::find_if(neighborList.begin(), neighborList.end(),
111 [&](const auto &pair) {
112 const auto &[particlePtr, list] = pair;
113 return particlePtr == nullptr;
114 });
115 insertLoc != neighborList.end()) {
116 auto &[particlePtr, neighbors] = *insertLoc;
117 particlePtr = &p1;
118 neighbors.reserve(listLengthEstimate);
119 neighbors.push_back(&p2);
120 } else {
121 neighborList.emplace_back(&p1, std::vector<Particle_T *>{});
122 neighborList.back().second.reserve(listLengthEstimate);
123 neighborList.back().second.push_back(&p2);
124 }
125 }
126 }
127 };
128
129 const auto &cellsPerDim =
130 utils::ArrayUtils::static_cast_copy_array<int>(linkedCells.getCellBlock().getCellsPerDimensionWithHalo());
131 // Vector of offsets from the base cell for the base step corresponding to the traversal
132 // and respective factors for the fraction of particles per cell that need neighbor lists in the base cell.
133 const auto offsets = VerletListsCellsHelpers::buildBaseStep(cellsPerDim, vlcTraversalOpt);
134
135 int xEnd{};
136 int yEnd{};
137 int zEnd{};
138
139 switch (vlcTraversalOpt) {
140 case TraversalOption::vlc_c08:
141 // cellsPerDim includes halo cells, so outermost cells are halo.
142 // Only owned-halo interactions are needed, not halo-halo.
143 // c08 is forward-looking: halo base cells only interact with other halo cells -> can skip.
144 // Other traversals like C01 and C18 are backward-looking: halo base cells may interact with owned cells -> must
145 // keep.
146 xEnd = cellsPerDim[0] - 1;
147 yEnd = cellsPerDim[1] - 1;
148 zEnd = cellsPerDim[2] - 1;
149 break;
150 default:
151 xEnd = cellsPerDim[0];
152 yEnd = cellsPerDim[1];
153 zEnd = cellsPerDim[2];
154 break;
155 }
156
157 // Since there are no loop dependencies merge all for loops and create 10 chunks per thread.
158 AUTOPAS_OPENMP(parallel for collapse(3) schedule(dynamic, std::max(cells.size() / (autopas::autopas_get_max_threads() * 10), 1ul)))
159 for (int z = 0; z < zEnd; ++z) {
160 for (int y = 0; y < yEnd; ++y) {
161 for (int x = 0; x < xEnd; ++x) {
162 // aliases
163 const auto cellIndexBase = utils::ThreeDimensionalMapping::threeToOneD(x, y, z, cellsPerDim);
164 auto &baseCell = cells[cellIndexBase];
165 auto &baseCellsLists = neighborLists[cellIndexBase];
166
167 // Allocate memory for ptr-list pairs for this cell.
168 baseCellsLists.resize(VerletListsCellsHelpers::estimateNumLists(
169 cellIndexBase, useNewton3, cells, offsets,
170 utils::ArrayUtils::static_cast_copy_array<size_t>(cellsPerDim)));
171 // Re-initialize neighbor lists for all particles in the cell, or for as many lists as currently exist if this
172 // is smaller. By "re-initialize", we mean reserving the estimated list length.
173 const size_t minNumParticlesVsNumLists = std::min(baseCell.size(), baseCellsLists.size());
174 for (size_t i = 0; i < minNumParticlesVsNumLists; ++i) {
175 auto &[particlePtr, neighbors] = baseCellsLists[i];
176 particlePtr = &baseCell[i];
177 neighbors.reserve(listLengthEstimate);
178 }
179 // For any remaining particles without (size non-zero) neighbor lists, reserve the estimated list length.
180 for (size_t i = minNumParticlesVsNumLists; i < baseCell.size(); ++i) {
181 baseCellsLists.emplace_back(&baseCell[i], std::vector<Particle_T *>{});
182 baseCellsLists.back().second.reserve(listLengthEstimate);
183 }
184
185 // Build lists for this base step according to predefined cell pairs
186 for (const auto &[offset1, offset2, _] : offsets) {
187 const auto cell1Index1D = cellIndexBase + offset1;
188 const auto cell2Index1D = cellIndexBase + offset2;
189
190 // For all traversals ensures the partner cell is not outside the boundary
191 const auto cell2Index3D = utils::ThreeDimensionalMapping::oneToThreeD(cell2Index1D, cellsPerDim);
192 if (cell2Index3D[0] >= cellsPerDim[0] or cell2Index3D[0] < 0 or cell2Index3D[1] >= cellsPerDim[1] or
193 cell2Index3D[1] < 0 or cell2Index3D[2] >= cellsPerDim[2] or cell2Index3D[2] < 0) {
194 continue;
195 }
196
197 // Skip if both cells only contain halos or dummys
198 if (not(cells[cell1Index1D].getPossibleParticleOwnerships() == OwnershipState::owned) and
199 not(cells[cell2Index1D].getPossibleParticleOwnerships() == OwnershipState::owned)) {
200 continue;
201 }
202
203 // Go over all particle pairs in the two cells and insert close pairs into their respective lists
204 for (size_t particleIndexCell1 = 0; particleIndexCell1 < cells[cell1Index1D].size(); ++particleIndexCell1) {
205 auto &p1 = cells[cell1Index1D][particleIndexCell1];
206
207 // Determine the starting index for the second particle in the pair.
208 // If both cells are the same and the traversal is newton3 compatible, this is the next particle in the
209 // cell. If the cells are different or the traversal is not newton3 compatible, this is index 0. For
210 // non-newton 3 compatible traversals (vlc_c01) we have to consider the interaction in both directions, so
211 // we always start from index 0.
212 size_t startIndexCell2 = 0;
213 if (cell1Index1D == cell2Index1D and vlcTraversalOpt != TraversalOption::vlc_c01) {
214 startIndexCell2 = particleIndexCell1 + 1;
215 }
216
217 for (size_t particleIndexCell2 = startIndexCell2; particleIndexCell2 < cells[cell2Index1D].size();
218 ++particleIndexCell2) {
219 auto &p2 = cells[cell2Index1D][particleIndexCell2];
220 // Ignore dummies and self interaction
221 if (&p1 == &p2 or p1.isDummy() or p2.isDummy()) {
222 continue;
223 }
224
225 // If the distance is less than interaction length add the pair to the list
226 const auto distVec = p2.getR() - p1.getR();
227 const auto distSquared = utils::ArrayMath::dot(distVec, distVec);
228 if (distSquared < interactionLengthSquared) {
229 insert(p1, particleIndexCell1, p2, cell1Index1D, cellIndexBase, baseCellsLists);
230 // If the traversal is Newton3 compatible, Newton3 is used for building regardless of if the actual
231 // interactions will use Newton3. In the case that Newton3 will not be used, the inverse interaction
232 // also needs to be stored in p2's list. If the traversal is Newton3 incompatible, the insertion into
233 // p2's list will occur when the p2 particle is p1. This is ensured above by the startIndexCell2.
234 if (not useNewton3 and not(vlcTraversalOpt == TraversalOption::vlc_c01)) {
235 insert(p2, particleIndexCell2, p1, cell2Index1D, cellIndexBase, baseCellsLists);
236 }
237 }
238 }
239 }
240 }
241 }
242 }
243 }
244
245 // Cleanup: Remove any unused ptr-list pairs to avoid accessing nullptr
246 for (auto &cellLists : neighborLists) {
247 cellLists.erase(std::remove_if(cellLists.begin(), cellLists.end(),
248 [](const auto &pair) {
249 const auto &[particlePtr, neighbors] = pair;
250 return particlePtr == nullptr;
251 }),
252 cellLists.end());
253 }
254 }
255
259 size_t getNumberOfPartners(const Particle_T *particle) const override {
260 for (const auto &cellsLists : _aosNeighborList) {
261 for (const auto &particlesLists : cellsLists) {
262 if (particlesLists.first == particle) {
263 return particlesLists.second.size();
264 }
265 }
266 }
267 return 0lu;
268 }
269
275 return _aosNeighborList;
276 }
277
282 auto &getSoANeighborList() { return _soaNeighborList; }
283
287 void generateSoAFromAoS(LinkedCells<Particle_T> &linkedCells) override {
288 _soaNeighborList.clear();
289
290 // particle pointer to global index of particle
291 std::unordered_map<Particle_T *, size_t> particlePtrToIndex;
292 particlePtrToIndex.reserve(linkedCells.size());
293 size_t i = 0;
294 for (auto iter = linkedCells.begin(IteratorBehavior::ownedOrHaloOrDummy); iter.isValid(); ++iter, ++i) {
295 particlePtrToIndex[&(*iter)] = i;
296 }
297
298 _soaNeighborList.resize(linkedCells.getCells().size());
299
300 // iterate over cells and for each create the soa lists from the aos lists
301 for (size_t firstCellIndex = 0; firstCellIndex < _aosNeighborList.size(); ++firstCellIndex) {
302 const auto &aosLists = _aosNeighborList[firstCellIndex];
303 auto &soaLists = _soaNeighborList[firstCellIndex];
304 soaLists.reserve(aosLists.size());
305
306 // iterate over pairs of particle and neighbor list
307 for (const auto &[particlePtr, neighbors] : aosLists) {
308 // global index of current particle
309 size_t currentParticleGlobalIndex = particlePtrToIndex.at(particlePtr);
310
311 // create SoA neighbor list for current particle
312 std::vector<size_t, autopas::AlignedAllocator<size_t>> currentSoANeighborList{};
313 currentSoANeighborList.reserve(neighbors.size());
314
315 // fill the SoA neighbor list with the indices of the particles from the corresponding AoS neighbor list
316 for (const auto &neighborOfCurrentParticle : neighbors) {
317 currentSoANeighborList.emplace_back(particlePtrToIndex.at(neighborOfCurrentParticle));
318 }
319
320 // add the newly constructed pair of particle index and SoA neighbor list to cell
321 soaLists.emplace_back(currentParticleGlobalIndex, currentSoANeighborList);
322 }
323 }
324 }
325
326 void setUpTraversal(TraversalInterface *traversal) override {
327 auto vTraversal = dynamic_cast<VLCTraversalInterface<Particle_T, VLCAllCellsNeighborList<Particle_T>> *>(traversal);
328
329 if (vTraversal) {
330 vTraversal->setVerletList(*this);
331 } else {
333 "Trying to use a traversal of wrong type in VerletListCells.h. TraversalID: {}",
334 traversal->getTraversalType());
335 }
336 }
337
338 private:
343
348 SoAListType _soaNeighborList{};
349};
350} // namespace autopas
#define AUTOPAS_OPENMP(args)
Empty macro to throw away any arguments.
Definition: WrapOpenMP.h:126
const std::array< double, 3 > & getBoxMax() const final
Get the upper corner of the container without halo.
Definition: CellBasedParticleContainer.h:71
size_t getNumberOfParticles(IteratorBehavior behavior) const override
Get the number of particles with respect to the specified IteratorBehavior.
Definition: CellBasedParticleContainer.h:115
size_t size() const override
Get the total number of particles saved in the container (owned + halo + dummy).
Definition: CellBasedParticleContainer.h:133
const std::array< double, 3 > & getBoxMin() const final
Get the lower corner of the container without halo.
Definition: CellBasedParticleContainer.h:76
double getInteractionLength() const final
Return the interaction length (cutoff+skin) of the container.
Definition: CellBasedParticleContainer.h:91
LinkedCells class.
Definition: LinkedCells.h:40
internal::CellBlock3D< ParticleCellType > & getCellBlock()
Get the cell block, not supposed to be used except by verlet lists.
Definition: LinkedCells.h:487
std::vector< ParticleCellType > & getCells()
Returns a non-const reference to the cell data structure.
Definition: LinkedCells.h:499
ContainerIterator< Particle_T, true, false > begin(IteratorBehavior behavior=IteratorBehavior::ownedOrHalo, typename ContainerIterator< Particle_T, true, false >::ParticleVecType *additionalVectors=nullptr) override
Iterate over all particles using for(auto iter = container.begin(); iter.isValid(); ++iter) .
Definition: LinkedCells.h:327
This interface serves as a common parent class for all traversals.
Definition: TraversalInterface.h:18
virtual TraversalOption getTraversalType() const =0
Return a enum representing the name of the traversal class.
Neighbor list to be used with VerletListsCells container.
Definition: VLCAllCellsNeighborList.h:27
void generateSoAFromAoS(LinkedCells< Particle_T > &linkedCells) override
Generates neighbor list in SoA layout from available neighbor list in AoS layout.
Definition: VLCAllCellsNeighborList.h:287
size_t getNumberOfPartners(const Particle_T *particle) const override
Gets the number of neighbors over all neighbor lists that belong to this particle.
Definition: VLCAllCellsNeighborList.h:259
ContainerOption getContainerType() const override
Returns the container type of this neighbor list and the container it belongs to.
Definition: VLCAllCellsNeighborList.h:48
void setUpTraversal(TraversalInterface *traversal) override
Assigns the current traversal to the correct traversal interface.
Definition: VLCAllCellsNeighborList.h:326
VerletListsCellsHelpers::AllCellsNeighborListsType< Particle_T > & getAoSNeighborList()
Returns the neighbor list in AoS layout.
Definition: VLCAllCellsNeighborList.h:274
std::pair< size_t, std::vector< size_t, autopas::AlignedAllocator< size_t > > > SoAPairOfParticleAndList
Helper type definition.
Definition: VLCAllCellsNeighborList.h:37
typename VerletListsCellsHelpers::AllCellsNeighborListsType< Particle_T > ListType
Type of the data structure used to save the neighbor lists.
Definition: VLCAllCellsNeighborList.h:32
typename std::vector< std::vector< SoAPairOfParticleAndList > > SoAListType
Helper type definition.
Definition: VLCAllCellsNeighborList.h:43
void buildAoSNeighborList(TraversalOption vlcTraversalOpt, LinkedCells< Particle_T > &linkedCells, bool useNewton3) override
Builds AoS neighbor list from underlying linked cells object.
Definition: VLCAllCellsNeighborList.h:53
auto & getSoANeighborList()
Returns the neighbor list in SoA layout.
Definition: VLCAllCellsNeighborList.h:282
Interface of neighbor lists to be used with VerletListsCells container.
Definition: VLCNeighborListInterface.h:24
void setLinkedCellsPointer(LinkedCells< Particle_T > *linkedCells)
Set the Linked Cells Pointer for this List.
Definition: VLCNeighborListInterface.h:115
This class provides the Traversal Interface for the verlet lists cells container.
Definition: VLCTraversalInterface.h:38
virtual void setVerletList(NeighborList &verlet)
Sets the verlet list for the traversal to iterate over.
Definition: VLCTraversalInterface.h:52
static void exception(const Exception e)
Handle an exception derived by std::exception.
Definition: ExceptionHandler.h:63
std::vector< std::vector< std::pair< Particle_T *, std::vector< Particle_T * > > > > AllCellsNeighborListsType
Cell wise verlet lists for neighbors from all adjacent cells: For every cell, a vector of pairs.
Definition: VerletListsCellsHelpers.h:30
size_t estimateNumLists(size_t baseCellIndex, bool useNewton3, const Cells &cells, const std::vector< BaseStepOffsets > &offsetsC08, const std::array< size_t, 3 > cellsPerDim)
Function to estimate the number of neighbor lists for one base step.
Definition: VerletListsCellsHelpers.h:127
size_t estimateListLength(size_t numParticles, const std::array< double, 3 > &boxSize, double interactionLength, double correctionFactor)
Simple heuristic to calculate the average number of particles per verlet list assuming particles are ...
Definition: VerletListsCellsHelpers.cpp:16
std::vector< BaseStepOffsets > buildBaseStep(const std::array< int, 3 > &cellsPerDim, const TraversalOption traversal)
Builds the list of offsets from the base cell for the c01, c08, and c18 base step.
Definition: VerletListsCellsHelpers.cpp:26
constexpr T dot(const std::array< T, SIZE > &a, const std::array< T, SIZE > &b)
Generates the dot product of two arrays.
Definition: ArrayMath.h:233
constexpr std::array< T, 3 > oneToThreeD(T ind, const std::array< T, 3 > &dims)
Convert a 1d index to a 3d index.
Definition: ThreeDimensionalMapping.h:55
constexpr T threeToOneD(T x, T y, T z, const std::array< T, 3 > &dims)
Convert a 3d index to a 1d index.
Definition: ThreeDimensionalMapping.h:29
This is the main namespace of AutoPas.
Definition: AutoPasDecl.h:32
int autopas_get_max_threads()
Dummy for omp_get_max_threads() when no OpenMP is available.
Definition: WrapOpenMP.h:144
@ owned
Owned state, a particle with this state is an actual particle and owned by the current AutoPas object...