AutoPas is a node-level auto-tuned particle simulation library developed in the context of the TaLPas project. 
Documentation
The documentation can be found at our website: https://autopas.github.io/doxygen_documentation/git-master/
Alternatively, you can build the documentation on your own:
- Requirements: Doxygen
make doc_doxygen
Examples
As AutoPas is only a library, it is not able to run simulations by itself. We have, however, included a few example proxy applications in the examples directory. The examples include:
Using AutoPas
Please look at our user documentation pages.
Developing AutoPas
Acknowledgements
This work was financially supported by:
- Federal Ministry of Education and Research, Germany, project "Task-based load balancing and auto-tuning in particle simulations" (TaLPas) 8, grant numbers 01IH16008A and 01IH16008B.
- Federal Ministry of Education and Research, Germany, project "Verbundprojekt: Simulationssoftware für Exascale-Supercomputer zur Berechnung von Dreikörperwechselwirkungen" (3xa), grant number 16ME0652K.
- Federal Ministry of Defense, Germany, through Helmut-Schmidt-Universität, project "Makro/Mikro-Simulation des Phasenzerfalls im Transkritischen Bereich" (MaST).
- Federal Ministry of Education and Research, Germany, project "Verbundprojekt: In Windkraftanlagen integrierte Second-Life-Rechencluster" (WindHPC), grant number 16ME0611.
Papers to cite
- F. A. Gratl, S. Seckler, H.-J. Bungartz and P. Neumann: N Ways to Simulate Short-Range Particle Systems: Automated Algorithm Selection with the Node-Level Library AutoPas, In Computer Physics Communications, Volume 273, 2022. (BibTeX, MediaTUM)
- F. A. Gratl, S. Seckler, N. Tchipev, H.-J. Bungartz and P. Neumann: AutoPas: Auto-Tuning for Particle Simulations, In 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Rio de Janeiro, May 2019. (BibTeX, MediaTUM)
- S. Seckler, F. Gratl, M. Heinen, J. Vrabec, H.-J. Bungartz, P. Neumann: AutoPas in ls1 mardyn: Massively parallel particle simulations with node-level auto-tuning, In Journal of Computational Science, Volume 50, 2021. (BibTeX, MediaTUM)